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Abstract—In the field of digital histopathology, computer-
aided diagnosis of digitized tissue samples with computational
algorithms is a rising research field. The tissue samples in this
study are stained using chemicals that enhance the recognizability
of different tissue structures. This staining can be highly variable,
which has an impact on the performance of the computational
algorithms. The aim of this project is to assess the use of three
color normalization algorithms as a pre-processing step on the KI
dataset from a collaborative research project between Karolinska
Institutet and KTH Royal Institute of Technology. The color
normalization algorithms aim to reduce the color variability of
the data. The basis of the study is an implementation of the
EfficentNet Convolutional Neural Network classification model,
that was adapted for the specific needs of the study. Performance
was assessed by firstly applying the color normalization filters to
the dataset and training multiple models on each of the filtered
datasets. The results from the individually trained models and
the combined results with ensemble learning techniques were
then analyzed. Our conclusions are clear, stain normalization
filters significantly impacts classification performance metrics.
The impact depends on the staining qualities of the filters.
Ensemble learning techniques present a more robust performance
than the individual filters with a performance comparable to the
best performing filter.

Sammanfattning—Datorstodd diagnos av digitaliserade
vivnadsprov med hjilp av berikningsalgoritmer inom digital
histopatologi ir ett aktivt forskningsfilt. Vivnadsproven i denna
studie har firgats med kemikalier som forbittrar igenkinnandet
av olika vivnadsstrukturer. Kvaliteten pa denna firgningsprocess
kan variera, vilket har en inverkan pa berikningsalgoritmernas
prestanda. Syftet med detta projekt &r att utvirdera
anvindningen av tre firgnormaliseringsalgoritmer som ett
forbehandlingssteg pa ett dataset fran ett samarbetsprojekt
mellan  Karolinska Institutet och Kungliga Tekniska
Hogskolan. De anvinda firgnormaliseringsalgoritmerna
syftar till att minska firgvariabiliteten i datan. Grund for
studien dr en implementering av Kklassificeringsmodellen
EfficentNet, som anpassades utifran studiens specifika
behov. Prestandan bedomdes genom att forst anvinda
varje firgnormaliseringsalgoritm pa datasetet och trina flera
modeller pa var och en av de filtrerade dataseten. Direfter
analyserades resultaten fran de individuella modellerna och
de kombinerade resultaten med ensemble learning”-tekniker.
Vara slutsatser #r tydliga, firgnormaliseringen paverkar
significant prestandamiitvirdena. Dess inverkan beror pa
filtrens firgningsegenskaper. ”Ensemble learning” teknikerna
ger en mer robust prestanda én de enskilt trinade modellerna
som lika bra som det béast presterande filtret.

Index Terms—Digital pathology, Machine learning, Color nor-
malization
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I. INTRODUCTION

Artificial intelligence and machine learning approaches,
specifically deep learning models are part of a rising research
field within digital healthcare, especially digital histopathol-
ogy. The workflows of pathologists have in the past been
limited to physical samples and analog microscopes. Recent
developments in hardware and software have led to a dig-
itization of this workflow. This opens up for the use of
deep learning to provide pathologists with reliable support for
diagnostic assessment and treatment decisions [1], [2].

Studies have shown that the need for pathology services
is high, especially in low to medium income countries. Such
countries have more than average disease cases but a low
share of global healthcare resources and poor access to qual-
ity pathology and laboratory medicine [3]]. Even in western
countries the access is not evenly distributed across regions
and some severely lack competence [4]. This puts heavy load
on the available specialists and creates long waiting times in
an already pressured healthcare system.

Since 2018, the Oral Biology and Medicine Group at the
Department of Dental Medicine at Karolinska Institutet (KI)
and the Theoretical Computer Science Division (EECS school)
at KTH Royal Institute of Technology school have an ongoing
research project on this topic named Evaluation of Neural
Networks for Digital Pathology on High Performance GPUs.
The overarching aim of the project is to provide clinicians
with computer-aided diagnostic support.

Prior to this project, multiple Masters and PhD students
have been involved, a dataset has been created and different
machine learning techniques have been evaluated. The KI
dataset consists of cell types from oral mucosa tissue samples
hand-labeled by pathologists at the Department of Dental
Medicine at KI. At first two deep learning algorithms, Softmax
CNN and RCCNet were investigated and the results were not
satisfactory in terms of accuracy [5]. A more computationally
intensive deep neural network EfficientNet has been used
and trained on the Kebnekaise supercomputer [6] in the
Masters thesis Epithelial Layer Boundary Detection using
Graph Convolutional Networks for Digital Pathology [7]. In
this thesis, it was proposed that the color variability from
the staining process could explain the misclassifications and
weak generalizability. This study aimed to investigate color
variability, by using methods from the study of Pontalba et al.
[8].

Pontalba et al. [[8] found that approaches of combining mul-
tiple color normalization filters and using ensemble learning
techniques might address some of the problems associated
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with color variability for a segmentation task. Similarly to
the Pontalba et al. this bachelor thesis investigated the use
of color normalization filters as a pre-processing step but for
a cell classification model instead of a segmentation model.
The impact on performance for models trained on the color
normalized datasets was analyzed individually and the results
from the individual models were combined using ensemble
learning techniques.

II. BACKGROUND
A. Histopathology

1) General: Histopathology is a field of clinical medicine
where diagnosis is based on visual examination by pathologists
of tissue samples under a microscope. The visual review of a
tissue is often subjective, with great variability in the decision
depending on the pathologist and the lab. Manual examination
of samples is a laborious and time consuming task, especially
if the few field specialists that are already in high demand are
required [9].

2) Digital Histopathology: The recent development of the
digitization of histological samples has enabled a large number
of samples to be scanned and archived digitally. A common
process is whole slide imaging (WSI) where tissue samples
placed on glass slides are digitally scanned [10]. Digital
histopathology encompasses all technologies that use these
digital slides to allow for improvements and innovations in
the workflow of pathologists |11]. Computational algorithms
or more specifically Al algorithms can take advantage of the
datasets consisting of tissue samples available for analysis
to support the pathologists in the diagnosis process [12].
While pathologists have to take the final decision, the Al can
highlight structures of interest in the tissue samples. However,
these samples need to be annotated by experts to be of use for
the AI algorithms which is a long and time consuming task.
Consequently the field suffers from a lack of quality annotated
data [13]. Construction of an end-to-end WSI deep learning
analysis pipeline that can be used in a clinical setting requires
many steps, see Fig.

Standard Deep Learning Project Flow for Digital Histopathology

[Premocessng | [ vodetng Postprocesng] | predeion

Data
Acquisition

Fig. 1. Typical deep learning project flow in digital histopathology |2]
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3) Clinical samples and associated histological grading:
The digitized tissue samples in the study Histopathological
Grading of Oral Mucosal Chronic Graft-versus-Host Disease:
Large Cohort Analysis [14] have been histologically graded
(GO to G4). The grading refers to a points-based grading
system based on “intraepithelial lymphocytes and band-like
inflammatory infiltrate, atrophic epithelium with basal cell
liquefaction degeneration, including apoptosis, as well as
separation of epithelium and pseudo-rete ridges” |14]|. The
grading gives an indication of the histological severity of the
tissue sample.

4) Haematoxylin and eosin tissue sample staining and
digitization process: Before a tissue sample can be scanned
and digitized or observed directly by a pathologist, it has
to go through a number of preparation steps to preserve its
structure and have an appearance that facilitates the diagnosis
of the pathologist [12]. One of the main steps is the staining
process. After the initial processing, most tissues and cells are
transparent under the microscopy |15] and staining is used to
reveal the anatomical features of the tissue structure for visual
examination. One of the most common staining processes is
Haematoxylin and Eosin (H&E) staining [16]. Eosin is acidic
and negatively charged and stains structures like the cytoplasm
and extracellular matrix in a red or pink color. Haematoxylin
is basic and stains structures like the nuclei in a purple or
blue color [|17]. After the cut section have been exposed to
these two stains they present visually recognizable features
that are easier for the pathologist to identify. However, this
staining is highly variable and can produce largely different
colors depending on a multitude of factors such as different
staining times, the variable concentration and pH of the
staining solutions [12] or the stain suppliers. In the review
article the haematoxylin and eosin stain in anatomic pathology
[18] Mark R. Wick presents some of the specific problems
that can occur during staining that cause variability in the
quality of the sections. The irregular staining of the sections,
a poor definition between the nuclei and the cytoplasm, an
over- or understaining with either of the stains or a blue-
black precipitate in the stained sections are some features that
contribute to a low quality section.

The tissue samples that are analyzed in this project are
sampled using a Smm punch biopsy from the oral mucosa
which is the mucous membrane of the inside of the mouth.
The sample is then fixed in a paraformaldehyde solution
to minimize the breakdown of the tissue structure before
being dehydrated and embedded in paraffin wax. The paraffin
embedded samples are then sliced into thin sections, placed on
glass slides (often using a microtome [[12]). These slices are
then deparaffinised and rehydrated and the formerly described
H&E staining is applied [5], [18]]. After this the section is
analyzed under a microscope or digitized with a scanner
and analyzed on a computer screen. This digitization process
can also introduce variabilities in the digitized tissue samples
depending on the use of different digitization systems [12].

As these variabilities can have great consequences on the
computational algorithms used to analyse the digitized tissue
samples, image processing techniques can be used to normal-
ize the samples and get a more consistent dataset |8]. This is



most commonly referred within digital histopathology as color
management, see the pre-processing step in Fig.

5) Oral mucosal tissue structure: The oral mucosa consists
of two main layers, the epithelial layer and the lamina propria
[19]. The epithelial layer is the outer-most layer and is formed
by epithelial cells (Epith.). The lamina propria consists of
multiple layers, the papillary layer and the underlying reticular
layer [20]. They both contain fibroblast cells that produce
collagen fibers. In the lower layer the cells are more spread
out with thicker regions of collagen [5], [20]. Fibroblast cells
(Fibr.) are present throughout lamina propria. Endothelial cells
(Endo.) are lining vascular channels throughout lamina propria
[20].

Lymphocytes are immune cells that appear in inflamed
areas and are therefore not very present in healthy tissue.
Both Inflammatory cells (Infl.) and Lymphocyte (Lymph.)
are present in unhealthy tisse in areas of acute and chronic
inflammation [20]]. A large aggregation of lymphocytes is a
sign of an active disease.

Healthy
Oral Mucosa

Inflammed
Oral Mucosa

Fig. 2. Two WSIs of a healthy oral mucosa (top) and an inflamed oral mucosa
(bottom). (Image provided by R. Sugars for Masters Thesis |5])

In Fig. [2| the black boxes locate the magnified areas on
the WSIs. The arrows point to different cell types: Infl, (red),
Epith. (green), Fibr. (yellow) and Endo. (blue).

Since some cells appear more frequently than others in the
tissue, imbalance in the amount of labeled cells of different
types is an inherent characteristic of histological datasets. As
an example, Epith. cells appear much more in the tissue than
Infl. cells since Epith. cells form the tissue structure while Infl.
cells appear only in inflamed areas.

B. Color normalization

1) General: The term color normalization (CN) encom-
passes methods used to alter the color distribution of an
image to fit certain needs. This can be achieved with many
different methods such as histogram specification or generative
adverserial networks [21], [22]. Within digital histopathology
they can be applied as a pre-processing step to transform the
tissue samples with variable colors to a common color space
[2]. The aim of the CN algorithms in digital histopathology
is to reduce the color variability in the dataset introduced by
the staining. Since the color in digital histopathology images
comes from staining, CN in digital histopathology is also
commonly referred to as stain normalization.
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2) Warwick toolbox: The CN methods in the Warwick
toolbox [23] require a farget image that defines the pursued
color distribution for the methods to replicate on the input
image.

The first type of CN method used is a color transfer method.
In this method, the original RGB image is transformed to the
perception-based [« color space [21] and the mean and the
variance is matched to the one from the target image. The
method is implemented in the toolbox according to Reinhard
et al. [21].

The second type of CN method uses a stain deconvolution
method, introduced by Macenko et al. [15], it relies on a
stain vector that represents the proportion of each wavelength
absorbed and it characterises the stain present on the image.
The challenge of stain deconvolution, however, is robustly
estimating the stain vectors V, which should be done adaptively
for each image [8||. This was further improved by Khan et al.
[24] which is the state-of-the-art filter in this toolbox.

The Reinhard method was initially designed for general
color transfer between images, while both Macenko and Khan
are designed specifically for CN of digital histopathology
images.

C. Machine learning

1) General: The use of Artificial Intelligence (AI), Ma-
chine learning (ML) and Deep learning (DL) has been called
the fourth industrial revolution due to the fact that AI methods,
tools and vocabulary are used in many fields to systematize
and automate problems [25]. Al tools have become state-
of-the-art in numerous medical applications by identification,
quantification and classification of patterns in medical images
to support practitioners [26], [27]. These developments make
it possible to standardise and automate manual and subjective
tasks, leading to more effective and efficient patient care |28].

2) Machine and deep learning models & the classification
problem: The goal of ML models is to develop automated
methods to detect and uncover patterns in data to make
better predictions. This makes it similar to statistics, it differs
primarily in its emphasis and terminology [29]. As Goodfellow
et. al puts it "Machine learning is essentially a form of applied
statistics with increased emphasis on the use of computers to
statistically estimate complicated functions” [30]. This quote
refers the Universal approximation Theorem presented in 1989
by Kurt Hornik |31] which states that a large enough ML
model can estimate any complex function arbitrarily accu-
rately. However, even though a ML model theoretically could
approximate any function, that is far from the truth in practice.
Usually this means that our ML-algorithm might not find the
true value for our internal parameters, or it finds a wrong
function [30].

Moreover, a DL model is a large ML model which deals
with a vast number of parameters, in some cases even in the
order of 106 — 107 as for example with Google’s EfficentNet
[32]. This allows the algorithm to learn highly complicated
patterns and requires a large amount of data [30].

ML methods can employ different types of learning: su-
pervised, unsupervised and reinforcement learning. Supervised
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learning tries to map inputs x to outputs y, given a training set
D= {Ii, Yi }i\;l, where IV is the number of data points. Each
entry x; is referred to as “features”. This means estimating
a function where a training set D of correctly identified
observations is at your disposal |33]. Unsupervised learning
however, tries to identify “interesting patterns” in data given no
labels y;, which make these problems less well-defined [29].
Supervised models address different types of classification
problems, the most common are binary, multi-class and multi-
labeled [34]. For multi-class problems, you have a training
set D of different classes and our model predicts one of these
classes for all data points in an unseen but similar dataset [35].

Cross-validation
Availabl‘e dataset

‘ Training dataset ‘ Test dataset ‘

k-fold cross-validation

Folding dataset (k =3)
|

1
Ist split | Validation fold ‘ Training fold | Test dataset ‘
2nd split | Training fold | Validation fold Training fold ‘ Test dataset ‘
3rd split Training fold ‘ Validation fold ‘ Test dataset ‘

Fig. 3. A visualisation of the differences between test, validation and training
set.

For ML models it is important to distinguish between
training, validation and test data which is depicted in Fig.
Starting with a large data pool of available data, a portion of
the data is taken out and marked as test data. The test data is
used after training to understand how well the learned patterns
generalize and is not used during training. The remaining data
can then be split into training and validation. The training
data is used to fit the internal parameters of the model, while
the validation data is there to estimate generalization errors
during training, optimize hyperparameters and to compare
with the test data performance after training. This is called
cross-validation. However, when a dataset is too small k-fold
cross-validation is used instead, where the available dataset is
partitioned in k splits randomly. If this is done by keeping the
class distribution it is called stratified k-fold cross validation.
By doing this we train k£ models to minimize the bias [30],
[36].

All supervised ML algorithms contain essentially four
properties: a model, internal (inside model) parameters and
external parameters (also called hyperparameters), a notion
of penalizing bad predictions per iterations (cost functions)
and an optimization for minimization direction. Internal model
parameters are specific for each model, for example a Neural
Network model contains weight matrices ¥ and biases b and
a simple linear model has parameters slope k and m being
y-intercept [30]. The hyperparameters are used to control the
updating process of the internal parameters [30]. A cost (or
loss) function is a real-valued function of the training and
validation data. The cost function gives a numerical score
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where by convention a lower numerical score is better. Cost
functions can be as exotic as cross-entropy loss or as simple
as Mean Squared Error (MSE), known from undergraduate
statistics class for linear regression models [37]. Something
a statistician might call model fitting of internal parameters
an ML researcher would call learning” [38]. The training is,
ideally, driving this numerical score towards gradually lower
scores, so that the model learns. During the training process
some model parameters grow out of scale, an activation
function “restricts the values within an acceptable range”
[39]. Its selection of activation function is dependent of the
model and where in the model it is used. Common activation
functions are Sigmoid, ReLU, ELU |39], [40]. Lastly, the
cost function is minimized iteratively with an optimization
algorithm. Since 1989 one of the main optimization algorithms
has been gradient-based back-propagation [41], in short Back-
prop. Backprop is essentially a numerical computation of the
chain rule to compute the partial derivatives with respect to
all internal parameters |30|], [40].

Two common combinations of cost function and optimizer
are Stochastic Gradient Descent (SGD) and Cross-Entropy
Loss (CEL) mentioned above. CEL is the negative log-
likelihood of our training labels, model parameters and input
variable and has been found to lead to faster learning and
improved generalization [30].

SGD is a common less computationally expensive solution
in gradient-learning, to minimize a loss function L. When
using SGD the gradient is estimated using a sample size
n. One version of SGD uses two hyperparameters: learning
rate [ and momentum m. The pseudocode is presented in
Algorithm E} Momentum aims primarily to handle variances
in the stochastic gradient due to our sampling method [30].
Learning rate is simply determining the size of the step. Most
advanced learning algorithms adapt this parameter throughout
the learning phase, for example by a decreasing scheme under
the assumption that only incremental changes are needed
later in the process when the minima is reached [30]. SGD
is usually calculated on 32 — 515 datapoints, since fewer
datapoints tend to ease the learning process for DL models
[42].

Algorithm 1: SGD with momentum [30]
Require: Learning rate /[, momentum parameter m
Require: Initial parameter 6, inital velocity v
while stopping criterion not met do

Sample a minibatch of m examples form the
training set (1, ..., (") with corresponding
targets y(?)

Compute gradient estimate:

g =V >, L(f(z1);0),yD)

Compute velocity update: v < mv — lg

Apply update: 6 < 0 +v

end

3) Image classification models & Convolutional Neural
Networks & EfficientNet: Image classification models form
a subgroup of classification models that classify images.
Among different approaches, Convolutional neural networks



(CNNs), a type of DL model, have become standard in image
classification tasks and have achieved state-of-the-art results
[43]. These neural networks use parameterized convolution
kernels that preserve some of the spatial characteristics of the
classified images [44].

Convolution

Pooling

Fig. 4. Visual representation of convolution and pooling layers [45]

The convolution operation is done by sliding the kernel
over the image and calculating the scalar product between
the kernel and a specific part of the image. The kernel size
defines the size of the image part to be scalar multiplied
with the kernel. A convolutional layer of a CNN is made
up of several of these kernels, where the conceptual idea for
the different kernels is to learn local spacial features of the
image [46]. To reduce the size of the input, pooling is then
applied to the resulting convolutions. These two operations
are visually represented in Fig. El A kernel in a CNN is a
matrix randomly initialized which tries to abstract different
features from the image. A feature is a specific representation
of the image with some underlying pattern that seems to be
evident by the algorithm. However, it is debatable what those
features actually are representing for a human. Older versions
of ML algorithms used to have hand-crafted features created
by domain experts, for example edge detectors [1].

The number of parameters involved in these CNNs have
since the success of AlexNet in 2012 [47] increased drastically
to improve the accuracy of the models. The number of
parameters is a compromise as too many parameters lead to
a computationally expensive model and too few may com-
promise the results of the model. In the article EfficientNet:
Rethinking Model Scaling for Convolutional Neural Networks
[32] Tan and Le introduce an effective compound scaling
method that reaches state-of-the-art accuracy and can scale
to any target constraints. Different scales of the EfficientNet
model are introduced named BO to B7. The architecture of the
model with the least parameters, EfficientNet-BO is presented
in Tab. |If where MBConv stands for mobile inverted residual
bottleneck blocks, which have shown to make the process more
efficient [32], [48].

A common practice in DL and specifically in image classifi-
cation is to utilize already trained models on large community
(open sourced) hand-labeled datasets, for example ImageNet
[49]. Transfer learning means using some parts of a pre-trained
model and then training it for a new but similar task [30].

4) Limited dataset & class imbalance & data augmentation
& overfitting: The models and learning algorithms used today
are nearly identical, at least conceptually, to those used 20-
30 years ago. The difference is that the availability of large
amounts of data have reduced the level of competence needed
for the user. The performance of a DL model is highly
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TABLE 1
EFFICIENTNET-BO ARCHITECTURE

Stage Operator Resolution | Channels | Layers
1 Conv3x3 224 x 224 31 1
2 MBConvl, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConv6, k3x3 28 x 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 7 %7 320 1
9 Convlx1 & Pooling & FC 7 %7 1280 1

dependent on the amount of data available during training
[30]. When large amounts of data is not available the per-
formance generalizability of the model becomes harder to
adjust, especially if the dataset has an inherent class imbalance
for representative examples. Models with low generalizability
are overfitted and perform well only on the training data,
which can be seen when comparing the validation and test
accuracy since validation is a subset of the training set |44].
This means that when a model has not generalized well it
has not learned broad enough features from the training data
to be able to interpret variations in the test dataset. Models
trained on imbalanced datasets show worse performance than
those trained on balanced datasets especially for classification
problems [50].

One technique to handle class imbalance is to use oversam-
pling, where we use multiple versions of the same data from
the same class. By doing this we can balance out our dataset
at a cost of increased risk for overfitting [50].

Moreover, there exists a lot of different label-preserving data
augmentation techniques to minimize overfitting. A common
method is random cropping, which involves resizing the sam-
ple and interpolating the new pixel values, to later randomly
crop to a chosen size. Another method is noise injection, which
adds imperceptible perturbations to the images. A specific
noise is adversarial noise, this noise is specifically created to
make the model make wrong predictions [51].

Regularization techniques minimize overfitting for limited
datasets by using a weight decay that adds a regularization
term to the cost function which supports the optimization
algorithm getting closer to a minimum [30].

5) Ensemble learning: An ensemble learning method com-
bines multiple model predictions into one prediction. The
multiple models are trained independently and each of them
are given a vote in evaluation of the test data. This has been
found to increase generalization, minimize error in predictions
and decrease variance of predictions |26, [30]. The most com-
monly used ensemble learning methods are majority voting,
probability score averaging (PSA) and stacking ensemble |26].

6) Model evaluation methods: To evaluate empirical no-
tions of accuracy and performance of a classification model
different measures can be used to help assess the models
ability to predict the classes of the unseen data.

To evaluate a classification model for a dataset with class
imbalance it is standard to use Precision, Recall and F1-score
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per n classes. To scale these measures to tell us something
about the entire model accuracy, macro and weighted mea-
sures are used, see Eq. |I| below. To understand these
measurements it’s more intuitive, and eases the notation, to
start with the classification (confusion) matrix. A confusion
matrix is a visualisation tool where the entries are basis for all
accuracy metric calculations in classification problems arising
in multiple fields from computer vision to natural language
processing [35]. The matrix, see Tab. has entries x; j,
column j being actual label and row ¢ being model prediction,
opposite conventions exists in some literature. Each entry is
the number of datapoints with the predicted and actual label
of that particular row and column.

TABLE II
GENERALIZED CLASSIFICATION (CONFUSION) MATRIX
Class 1 | Class 2 | Class 3 Class N
Class 1 T1,1 T1,2 1,3 T1,N
Class 2 2,1 T2,2 2,3 Ti,N
Class 3 3,1 3,2 3,3 i, N
Class N ITN,1 ITN,2 ITN,3 TN,N

For the binary classification problem our Nx/N dimension
confusion matrix becomes a 2x2 matrix, see Tab. Each
entry has an associated name, where z;; := True Positive
Count (TP), z; 2 := False Positive Count (FP - Type 1 error),
29,1 := False Negative Count (FN - Type 2 error) and x5 o :=
True Negative Count (TN) [7], |52].

TABLE III
BINARY CLASSIFICATION (CONFUSION) MATRIX

Class 1 | Class 2
Class 1 TP FP
Class 2 FN TN

We can now define our metrics for the multi-class and binary
classification problem. For the binary classification problem,
with only two classes the common measures are:

A o TP+TN 0
Y = TP Y FPYFN+ TN
TP
Precision == ———— 2
recision TP+ FP 2)
TP
Recall .= m (3)

Precision - Recall
Fy — score := 2 - 4
1 seore Precision + Recall @

For each Eqm-one can investigate each metrics purpose
or “Evaluation focus”, inspired by Sokolova (2009) [34]. This
will give an intuition for each measure before we generalize
to datasets with more classes than two. Accuracy evaluates
how well the model predicted the two classes, or the overall
effectiveness of the model. Precision is the fraction of the
predicted positives which were actually positive. Recall is the
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fraction of how many of the actual positives where predicted as
such. When evaluating performance on an unbalanced datasets
accuracy is a poor performance metric for characterizing and
Precision and Recall give a better representation of model
performance [30], |33]. In specific applications Recall or
Precision could be especially important. For example, in
digital pathology Recall is important since false negatives
could mean missing to diagnose a certain disease. Lastly,
Fy — Score is a harmonic mean of Precision and Recall
[52], which penalizes a spread amongst Precision and Recall
in a better way than an arithmetic mean. For example,
Precision = 0.1 and Recall = 0.9, would give T = 0.5 while
Fy} — Score = 0.18 which gives us a better representation of
this poorly performing model.

For the multi-class classification problem there are N
classes or states, which means that Eq. [1{- has to be gener-
alised for more than two classes. We will use the introduced
notation from Tab.

N
D i1 Tii
L —1 4z
Accuracy = ——=Ff—— 5)
it Zj:l Lij
.. 'T:n n
Precisionn == — (6)
Dic1 Tni
x
Recall,, := Nnin @)
i=1Lin

Precision,, - Recall
F -8 =2 = i 8
! corén Precision,, + Recall,, ®)

Note that measures above for Precision, Recall and
Fy —Score are per class n of N classes, denoted Precision,,,
Recall,, and F; — Score,,. A Precision, Recall and F} —
Score measure for the entire model could also be of interest to
give a notion of average Precision, Recall and Fy — Score.
Most common approaches here is to combine each measure-
ment across classes with an normal arithmetic average, also
called macro average, here denoted MA gee Eq.

N
) 1
Precision™4 = ~ Z Precision, &)
n=1
N
1
RecallM4 = N Z Recall, (10)
n=1
Precisi JWA.Ri”MA
Fi — Score =2 recision eca a1

Precision™4 + RecallM4

Class imbalance can be accounted for by multiplying each
measurement with its associate weight w; (number of class
appearance divided by total number of points), also called
weighted macro average, here denoted "M [34], see Eq.

N
1
PrecisionWMA = v Z wy, - Precision,, (12)
n=1
N
) 1
RecallVMA = N Z w,, - Recall, (13)
n=1



Precision™MA . RecallVMA

PrecisionWMA 4 RecallVMA

7) Limits of DL algorithms and intrinsic variability: Much
of the research in DL can be explained by the no free lunch
theorems which state that each class of optimization problems
need specific solutions |53]. Just because an DL algorithm
works on a specific sub-problem and dataset it does not
mean it will work on a similar setups, meaning there is no
superior DL algorithm for all uses |30]]. Another issue with DL
models is variability. One of the most cited papers within this
area, written by Dietterich [54], concluded in 1998 that there
are multiple random sources causing the variability. These
sources include random variation in data selection, internal
randomness in common algorithms and random classification
errors. This causes challenges for reproducibility within the
academic community.

The training of the large models used in DL requires large
computational resources and time allocation. Cutting edge
research in the field often needs a high performance computer
cluster for effective training [40].

Concerns have been raised about the unexplainable nature
of decisions made by DL algorithms and a need for them to
be interpretable by humans. This is called explainable Al and
deals with methods that “enable causality, explanatory ability,
and interpretive ability of the prediction results of the model”
[55], [56], which may be important in some applications such
as diagnostic tasks within the medical field.

Fy — Score :==2-

(14)

D. Related work

In this paragraph relevant research will be presented as a
basis for the discussion of this paper and a highlight of their
findings. Pontalba et al. |8] used the CNN models named
CNN3 [57] and UNET3 [58] for a segmentation task based on
three different H&E stained datasets TCGA [57], TNBC |59]
and SMH (not public) |8]. Stain normalization was used as a
pre-processing step with the Warwick toolbox [|23]. The papers
showed that the filters introduced variability and used the
ensemble method PSA. The paper only presented validation
metrics with dice similarity coefficient (DSC) 8] as the main
performance metric. The performance varied for the TCGA
and TNBC dataset where the ensemble learner performed
better than the individual filters with the DSC metric.

Estreen [7] used the EfficientNet model |32 on the H&E-
stained KI dataset. However, Estreen did not use the same
training/validation/test composition as this report. The report
also displayed validation metrics of accuracy ~ 92% as the
main result. Within the same research group Brynjarsson [5]
used shallow neural networks on the KI dataset, VGGI16,
RCCNet & Softmax. The data composition was slightly dif-
ferent to this report. The main presented results were in terms
of validation accuracy where the architectures performed as
following: VGG16: ~ 85%, RCCNet: ~ 88% & Softmax:
~ 90%.

Following will be an exposition of previously reported
results from object detection models from similar fields.
Chouhan et al. [60] showed an increase of ~ 2 percentage
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points on accuracy from their best performing model on a
similar task using a majority voting technique on a classi-
fication task. Shorfuzzman et al. |61], similarly to Chouhan
et al. showed an increase of ~ 1 percentage point. Lakhani
et al. [62] showed an increase of ~ 1 percentage point on
AUC (Area under the ROC Curve) from their best performing
detection model with PSA. Hooda et al [63]] showed a ~ 4
percentage points increase on a similiar task as Lukani et al.
presented. Hinton et al. [64] reported interesting results on a
speech recognition model using ensemble learners. The use
of ten models for ensembles only increased the accuracy ~ 2
percentage points.

Islam et al. |65] showed that ensemble learning models
experience a diminishing return on investment at around 5-
10 models. We cannot continue to add models and expect the
performance to continuously increase. However, the robustness
of the model improves as more models are added. PSA is also
expected to perform better than majority voting.

III. METHODS

The process pipeline consisted of four different parts that we
are accounted for in order here. The process setup is visualized
in Fig. [S|and each component is addressed below.

A. KI Dataset

The dataset consists of partially labeled 2000 x 2000 pixel
WSI of tissue samples from six patients. The tissues have a
great variety of histological grade (G0-G4) [14] and quality
of the H&E staining.

The images were labeled by pathologists at KI with an open
source tool called LabelIMG [66]. The tool generates markup-
files (.xml) with each labeled object having a name (cell type)
and location (bounding box). Four different types of cells were
labeled: Inflammatory (Infl.), Lymphocyte (Lymph.), Fibrob-
last and Endothelial (Fibr./Endo.) and Epithelial (Epith.). See
Tab. [[VJVII] for their specific occurrences in the dataset, Fig.
[6] for a visualization of their location in the WSI and Fig.
for a visualization of the individual cropped cell images.

TABLE IV
TRAINING SET

Grading | Patient ID | Images | Image labels
GO P20 21 13 121
G3 P9 7 1261
G4 P19 6 1234
Tot. 34 15 616
TABLE V
TRAINING SET PER CELL TYPE
Grading | Patient ID | Infl. | Lymph. | Fibr/Endo. | Epith.
GO P20 420 935 3745 8 021
G3 P9 148 404 284 425
G4 P19 147 628 199 260
Tot. 715 1967 4228 8 706
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Fig. 5. Visualization of project pipeline

epithelial

inflammatory lymphocyte BB fibroblast and endothelial

Fig. 6. Visualization of location on type of the annotated cells in the
2000x2000 slide P9_4_1

TABLE VI
TESTING SET

Grading | Patient ID | Images | Image labels
GO N10 5 2 094
G3 P13 4 2 004
G4 P28 4 7 220
Tot. 13 11 318

B. Color Normalization

All images were filtered using three publicly available CN
algorithms based on Stain Normalization Toolbox provided
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Fig. 7. Visualization of different cell types in our dataset. The cells are
cropped from images P20_5_1, P9_3_1 and P19_2_1.

TABLE VII
TESTING SET PER CELL TYPE
Grading | Patient ID Infl. Lymph. | Fibr./Endo. | Epith.
GO N10 79 59 634 1322
G3 P13 333 278 787 606
G4 P28 729 1987 1775 2729
Tot. 1141 2324 3 196 4657

by the Department of Computer Science of the University of
Warwick [23]. These three filters are referred to as Macenko
(15], Reinhard and Khan [24]. The image P9_4_1 from
the KI Dataset was used as a reference image for all three CN
algorithms. This specific image was chosen because it showed
good staining quality. Every single image in the dataset was
then filtered with the three filters and saved as four different



image files (one unfiltered, and one for each of the three
filters).

C. Data parsing & augmentation

The 2000x2000 WSIs are cropped to 32x32 images around
the center of the labeled cells, creating a separate image per
label (see Tab. [IV]& [VI and Fig.[7). Note that unlabeled cells
were not taken into account.

All parsed images were Gaussian normalized to minimize
the impact of intensity and contrast variability, and trans-
formed pixel means above 0.95 were considered white and
ignored [7].

A limited dataset is prone to issues with overfitting, less
generalizability and biased models. To address these first two
problems, five data augmentation methods were used on the
training and validation set. The first method is random crop-
ping and involved resizing the images from 32x32 to 246x246,
the new pixels are interpolated using bicubic interpolation
[67], |68]. After the resizing to 246x246, the images are
cropped around a randomly chosen location to 224x224. In the
second method, Gaussian Noise was added to all pixel values
(= 0& o = 0.1). Thirdly, additional training samples were
created by injecting adversarial noise (AdvProp). Fourthly, a
regularization technique was used together with the chosen
optimizer, which set weight decay to 0.00005. Lastly, also due
to the selection of small-batch regime optimizer, the batch size
was set to 32. To address the bias associated with a limited
dataset, stratified k-fold cross validation techniques were used
with £ = 5. Because of the imbalanced dataset, oversampling
techniques were used to equalise the magnitudes over our four
class (cell) types. This oversampling involved augmenting the

dataset, see Tab. |VIII

TABLE VIII
TRAINING SET PER CELL TYPE - BEFORE AND AFTER OVERSAMPLE
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E. Training and implementation

For each of the 5 validation splits 100 iterations were used
and the computation time for each trained model with selected
hyperparameters was in the magnitude of 8 hours. Over the
100 epochs the model with the highest validation Topl-
accuracy was chosen. Computations were made using NVIDIA
V100 and T4 nodes on a Swedish National Infrastructure
for Computing (SNIC) resource named Alvis |71] through
the grant agreement no. 2020/33-67. The entire project is
documented and available at github [72].

F. Ensemble learning

Two ensemble learning regimes were implemented based on
all five trained models (k=5, see above) for each four datasets
with six iterations, giving us a total of 120 models to combine.
The first algorithm was based on a naive approach where each
models topl-class prediction per image was combined via a
majority voting technique. This means that if three models
predicted Lymph. and one Infl., Lymph. was predicted. We
dealt with equal predictions by uniformly randomizing the
prediction, see Algorithm

In the following pseudocode explanation, N refers to the
number of different filters used, including the unfiltered ver-
sion, in our case N = 4. M refers to number of data points
in the dataset, in our case the testing set has M = 11 318.

Algorithm 2: Naive majority voting ensembling

Input : N vectors y; where y;(¢) is the Topl
predicted class of the i:th data point
Output: the vector e where e(7) is the ensemble
predicted class of the i:th data point
for i <— 1 to M do
Assign to e(?) the most common value y; () for j
between 1 and N;

D. EfficientNet: Cell classification model

The cell classification model is based on Google’s State-
of-The-Art Convolution Neural Network EfficientNet [32]
through an early January 2020 open source implementation
[69], using the model architecture with least parameters:
EfficientNet-B0. The implementation is using Facebook’s open
source deep learning framework called PyTorch [70]. Weights
were updated under training and cross entropy loss was
selected as the cost function. To ease the computational time
Stochastic Gradient Descent (SGD) was used to estimate
the actual minimization direction. The learning rate, the cost
function multiplier, was set to 1%. A learning rate schedule
was used by decaying it 3% every 2.4 epochs (iterations), to
converge to the minimum in a smoother manner. To accelerate
the training and to get better performance with fewer epochs,
momentum was set to 0.9. Transfer learning was used by
loading a model pretrained on the ImageNet dataset [7].

Total cell type count | Infl. | Lymph. | Fibr/Endo. | Epith. If two or four values appear the same amount of
Before oversample 715 1967 4228 8 706 times, we randomly choose one of the two or four
After oversample 6435 | 9835 8 495 10 706 end

Scaling factor 900% 500% 200% 123%

The second more restrictive and representative regime PSA
was inspired by the Pontalba paper [8], [26], see Algorithm
E} A softmax activation function was applied to the output
layer, giving us four probability vectors (P;) for each image
and model. These were added up, and scaled down by model

count, see Eq.[15]
1
Ei=% Y. P (15)

filter

G. Model evaluation

To evaluate the model precision, recall and F1-score were
used on the topl prediction for each cell type, including an
average for all cell types, with and without weights. Accuracy
refers to Top-1 accuracy which uses the Top-1 class, the class
with the highest predicted probability. The Top-1 class is also
used to calculate precision and recall. Confusion matrices were
added to strengthen the analysis per class. Lastly, loss and
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Algorithm 3: PSA ensembling

Input : N matrices p; where p;(4) is the vector with
the predicted class probabilities of the i:th
data point

Output: the vector e where e(i) is the ensemble
predicted class of the i:th data point

for i < 1 to M do

Assign to V' the sum of p; (i) for j between 1 and

N;
Scale down the V' with N for each element.
Assign to e(%) the topl predicted class of V'
end

accuracy curves were used to study the learning process during
the training phase.

IV. RESULTS
A. Color Normalization

The first step where results could be seen was during
the pre-processing step. Depicted in Fig. (8| we show some
representative parts of the color normalized dataset over a
variety of histological severity and oral mucosa structures.

B. Classification Performance Metrics

The 120 trained models were all evaluated on the testing set
filtered in the same manner as the training set. The selection
of models for the ensemble method were arbitrary as long as
they were unique and one from each filter. No model was used
in the ensemble learning more than once. Presented are our
findings with our independent variable being the filters and
all other parameters were fixed during our experiments. The
evaluation metrics from these classifications are presented in
the Fig.[9] —é@]

In Fig. the boxplots show the accuracy per filtered
model type for the four differently filtered datasets and the
two ensemble learning techniques. The second Fig. gives
additional insights with the metrics precision, recall and F1-
score which was averaged in two different ways. Fig.shows
how all model types performed over our four cell types. In Fig.
the relationship per model type is presented. This figure
aims to investigate if a certain filter helps the trained model
to classify a certain type of cell.

To further visualize the results, the metrics of the best
performing model in each model type is presented in Appendix
A. The appendix includes a confusion matrix to provide a
better understanding of the classification. To show the learning
process over epochs the appendix also includes loss and
accuracy curves.

V. DISCUSSION
A. Color normalization

The quality of the CN results differed between filters but
also between different files when the same filter was used, see
Fig. It is possible that for each filter, artifacts from CN could
arise. Both the filters Khan and Reinhard seem to produce a
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result that mimics a high quality H&E staining. Both the above
statements are similar to the results presented by Pontalba et
al. [8]. However, the filter Macenko introduced artifacts for
some image files that manifested as a very blue color that did
not relate to the original image in any apparent way and as
yellow and red patches on some parts of the image. Pontalba
et al. [8] also referred to Macenko as showing inconsistent
color mapping”. However the filter was kept to add variety
in our results and to study its impact on model performance.
According to Khan et al. [24] their filter is state of the art
due mainly to three reasons: less introduction of artifacts,
robustness and appropriateness for H&E staining. Khan et al.
also claim that color deconvolution based methods, such as
Macenko and Khan, are most appropriate for stain normaliza-
tion since the “chemical processes are largely independent for
each stain, and color deconvolution separates out the effect of
variation of each stain so it can be corrected independently”.
Khan et al. |24] propose two reasons why Khan outperforms
Macenko: 1) Better, or more robust, deconvolution matrix
estimation, and/or 2) a more appropriate mapping function.”
Furthermore, Khan et al. [24] argue that the Reinhard filter is
“attractive in its simplicity but is based on the false assumption
of unimodal color distribution in each channel” which is not
true for dyes and stains.

Images that mimic high quality staining are expected to
lead to better model training and classification. Conversely,
inaccurate coloring and introduced artifacts are expected to
negatively affect model training and cell classification.

B. Classification Performance Metrics

All filtered model types show an increased spread in accu-
racy values in relation to the non-filtered baseline model, see
Fig.[9]

Even though Khan and Reinhard showed similar visual
staining quality, the models trained on them performed vastly
differently. Khan showed the highest accuracy and averaged
metrics out of any of the individually filtered model types,
see Fig. [9] and Fig. On the other hand, Reinhard per-
formed similarly to the unfiltered model type in accuracy
and averaged metrics. The models trained on the Macenko
filtered dataset had lower accuracy and averaged metrics than
all other model types, see Fig. E] The poor performance can
perhaps be explained by the introduced blue artifacts of the
Macenko filter. The artifacts might be due to the assumption
of unimodal distribution presented in Ch. but it needs
further investigation for a definite conclusion to be drawn.

Both ensemble learners showed more robust accuracy values
than any of the individually filtered models, see Fig. E] The
PSA ensemble learners outperformed the naive approach for
accuracy and for the averaged metrics in Fig. This was
expected since PSA utilizes more information from each
model. These results are consistent to what was presented
in Ch. The ensemblers with 30 included models also
showed very similar accuracy values to the best performing
filter, Khan. This is interesting since the ensemble learners take
into account the results from the poorly performing Macenko
filter. This would indicate that further improvements to the
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Fig. 8. CN filter results with varieties in histological grading (GO, G3 and G4) and oral mucusa structure: lamina propria (green), epithelium (Red) and
the boundary (blue) in-between them. Meaning, for each image in the column "Un-Normalized” the three filtered results (Khan, Reinhard and Macenko) are
depicted to the left with respect to a representative reference image.
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Fig. 9. Boxplot of accuracy results per filter and ensemble learning method.
Evaluated on the test set, each box contains 30 data points (bincount).

performance could be made if models for the ensemblers are
hand-picked and the Macenko filter is left out.

There is a clear trend for higher quality classification for
cell types with more labels in the training dataset, see Tab
and Fig. Specifically, for the inflammatory cell type
all filtered datasets including non-filtered showed low quality
classifications, see Fig. and Fig. This means that
the used data augmentation techniques were not sufficient to
prevent low quality classification for the rarest cell types.

One outlier from the general trend in filter performance was
the classification of Lymphocytes where precision as expected
was higher for Khan, but the recall was highest for Macenko.
For classification of Epithelial cells the precision scores for
Khan outperformed both ensemble learning techniques. An-
other trend shift can be seen for the inflammatory cell types
where the ensemblers got worse metrics than the individual
filters for recall, leaving the unfiltered dataset with the highest
F1-score, see Fig.

It is also clear that our model is highly overfitted when
comparing the metrics from the validation and test set in
Appendix A, where a 40 percentage points difference in
accuracy values between validation and test datasets can be
observed. The authors find it difficult to compare their results
directly to Brynjarsson [5] who presents the validation metrics
as the main result. However, the validation results in this report
are in the same magnitude as both Estreen and Brynjarsson
with a validation accuracy of ~ 90%. The test accuracy
presented by Estreen [7]] is also similar to the test accuracy of
this report, around ~ 65%.

VI. CONCLUSIONS

For this project, three CN algorithms were used as a pre-
processing step on the KI dataset to improve an existing
EfficentNet CNN cell classification model. The CN algorithms
were used to handle the color variability in the KI dataset.
Performance was assessed by analysing the results from the
individually trained models and by combining these results
with ensemble learning techniques. Our conclusions are clear,
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stain normalization filters significantly impact classification
performance. When we have a filter that introduces artifacts,
such as the Macenko filter, the classification performance is
worse than that of the unfiltered baseline. For filters with
adequate staining qualities such as Khan, the performance
is enhanced. Lastly, ensemble learning techniques have been
shown to average out badly performing filters and giving
us a robust performance, comparable to the best filter. We
can conclude that the combination of well designed and
selected CN methods and ensemble learning techniques boost
performance for a cell classification model.

VII. FUTURE WORK

Firstly, there are some issues in the existing pipeline that
needs to be addressed. The oversample scheme is currently
flawed and creates misleading validation metrics. The over-
sample process is performed on the training set before the
training validation split. Therefore, some images can appear
in both the training and the validation set multiple times.
The chosen hyperparameters of the model need to aim for
good performance on the test set rather than the validation
set. Another main issue with the setup is our dataset that is
still very limited making the class imbalance an especially
difficult problem. There are shared and publicly available
histopathological imaging datasets that are used in research
[73] that could be used, however, none of these cover oral
tissue samples specifically. It would therefore be of interest
to expand the current dataset with more hand-labeled data
possibly by collaborating with other institutes.
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